AttributesValues
type
value
  • This paper introduces a novel parameter, called iterated type partition, that can be computed in polynomial time and nicely places between modular-width and neighborhood diversity. We prove that the Equitable Coloring problem is W[1]-hard when parametrized by the iterated type partition. This result extends to modular-width, answering an open question on the complexity of Equitable Coloring when parametrized by modular-width. On the contrary, we show that the Equitable Coloring problem is FPT when parameterized by neighborhood diversity. Furthermore, we present a scheme for devising FPT algorithms parameterized by iterated type partition, which enables us to find optimal solutions for several graph problems. While the considered problems are already known to be FPT with respect to modular-width, the novel algorithms are both simpler and more efficient. As an example, in this paper, we give an algorithm for the Dominating Set problem that outputs an optimal set in time [Formula: see text], where n and t are the size and the iterated type partition of the input graph, respectively.
subject
  • Graph theory
  • Computational problems in graph theory
  • Computational complexity theory
  • Analysis of algorithms
  • Millennium Prize Problems
  • Parameterized complexity
  • Graph coloring
  • Unsolved problems in computer science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software