AttributesValues
type
value
  • Bacterial foraging optimization (BFO), a novel bio-inspired heuristic optimization algorithm, has been attracted widespread attention and widely applied to various practical optimization problems. However, the standard BFO algorithm exists some potential deficiencies, such as the weakness of convergence accuracy and a lack of swarm communication. Owing to the improvement of these issues, an improved BFO algorithm with comprehensive swarm learning strategies (LPCBFO) is proposed. As for the LPCBFO algorithm, each bacterium keeps on moving with stochastic run lengths based on linear-decreasing Lévy flight strategy. Moreover, illuminated by the social learning mechanism of PSO and CSO algorithm, the paper incorporates cooperative communication with the current global best individual and competitive learning into the original BFO algorithm. To examine the optimization capability of the proposed algorithm, six benchmark functions with 30 dimensions are chosen. Finally, experimental results demonstrate that the performance of the LPCBFO algorithm is superior to the other five algorithms.
Subject
  • Algorithms
  • Artificial intelligence
  • Mathematical logic
  • Theoretical computer science
  • Heuristic algorithms
  • Bioinspiration
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software