About: Diverse data sets have become key building blocks of translational biomedical research. Data types captured and referenced by sophisticated research studies include high throughput genomic and proteomic data, laboratory data, data from imagery, and outcome data. In this paper, the authors present the application of an XML-based data management system to support integration of data from disparate data sources and large data sets. This system facilitates management of XML schemas and on-demand creation and management of XML databases that conform to these schemas. They illustrate the use of this system in an application for genotype–phenotype correlation analyses. This application implements a method of phenotype–genotype correlation based on phylogenetic optimization of large data sets of mouse SNPs and phenotypic data. The application workflow requires the management and integration of genomic information and phenotypic data from external data repositories and from the results of phenotype–genotype correlation analyses. Our implementation supports the process of carrying out a complex workflow that includes large-scale phylogenetic tree optimizations and application of Maddison's concentrated changes test to large phylogenetic tree data sets. The data management system also allows collaborators to share data in a uniform way and supports complex queries that target data sets.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Diverse data sets have become key building blocks of translational biomedical research. Data types captured and referenced by sophisticated research studies include high throughput genomic and proteomic data, laboratory data, data from imagery, and outcome data. In this paper, the authors present the application of an XML-based data management system to support integration of data from disparate data sources and large data sets. This system facilitates management of XML schemas and on-demand creation and management of XML databases that conform to these schemas. They illustrate the use of this system in an application for genotype–phenotype correlation analyses. This application implements a method of phenotype–genotype correlation based on phylogenetic optimization of large data sets of mouse SNPs and phenotypic data. The application workflow requires the management and integration of genomic information and phenotypic data from external data repositories and from the results of phenotype–genotype correlation analyses. Our implementation supports the process of carrying out a complex workflow that includes large-scale phylogenetic tree optimizations and application of Maddison's concentrated changes test to large phylogenetic tree data sets. The data management system also allows collaborators to share data in a uniform way and supports complex queries that target data sets.
subject
  • Data management
  • Distributed computing problems
  • Technology forecasting
  • Polymorphism (biology)
  • XML databases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software