AttributesValues
type
value
  • Endoplasmic reticulum (ER) stress-induced endothelial cell (EC) apoptosis has been implicated in a variety of human diseases. In addition to being regarded as an NADPH oxidase (NOX) inhibitor, apocynin (APO) exhibits an anti-apoptotic effect in various cells. The present study aimed to identify the protective role of apocynin in ER stress-mediated EC apoptosis and the underlying mechanisms. We found that ER stress resulted in a significant increase in c-Jun N-terminal kinase phosphorylation, and elicited caspase 3 cleavage and apoptosis. However, apocynin obviously attenuated EC apoptosis and this effect was partly dependent on ER stress sensor inositol-requiring enzyme 1α (IRE1α). Importantly, apocynin upregulated IRE1α expression in both protein and mRNA levels and promoted the pro-survival XBP1 splicing. Our results suggest that apocynin protects ECs against ER stress-induced apoptosis via IRE1α involvement. These findings may provide a novel mechanistic explanation for the anti-apoptotic effect of apocynin in ER stress.
Subject
  • Immunology
  • Endoplasmic reticulum
  • Apoptosis
  • Programmed cell death
  • Cell signaling
  • Cellular senescence
  • Medical aspects of death
  • Aromatic ketones
  • Apollo asteroids
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software