AttributesValues
type
value
  • The coronavirus causing the COVID-19 pandemic, SARS-CoV-2, uses −1 programmed ribosomal frameshifting (−1 PRF) to control the relative expression of viral proteins. As modulating −1 PRF can inhibit viral replication, the RNA pseudoknot stimulating −1 PRF may be a fruitful target for therapeutics treating COVID-19. We modeled the unusual 3-stem structure of the stimulatory pseudoknot of SARS-CoV-2 computationally, using multiple blind structural prediction tools followed by μs-long molecular dynamics simulations. The results were compared for consistency with nuclease-protection assays and single-molecule force spectroscopy measurements of the SARS-CoV-1 pseudoknot, to determine the most likely conformations. We found several possible conformations for the SARS-CoV-2 pseudoknot, all having an extended stem 3 but with different packing of stems 1 and 2. Several conformations featured rarely-seen threading of a single strand through the junction formed between two helices. These structural models may help interpret future experiments and support efforts to discover ligands inhibiting −1 PRF in SARS-CoV-2.
Subject
  • Virology
  • RNA
  • Zoonoses
  • Spectroscopy
  • COVID-19
  • 2019 disasters in China
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software