AttributesValues
type
value
  • This article examines the extent to which existing network centrality measures can be used (1) as filters to identify a set of papers to start reading within a journal and (2) as article-level metrics to identify the relative importance of a paper within a journal. We represent a dataset of published papers in the Public Library of Science (PLOS) via a co-citation network and compute three established centrality metrics for each paper in the network: closeness, betweenness, and eigenvector. Our results show that the network of papers in a journal is scale-free and that eigenvector centrality (1) is an effective filter and article-level metric and (2) correlates well with citation counts within a given journal. However, closeness centrality is a poor filter because articles fit within a small range of citations. We also show that betweenness centrality is a poor filter for journals with a narrow focus and a good filter for multidisciplinary journals where communities of papers can be identified.
Subject
  • Network analysis
  • Occupations
  • Graph theory
  • Network theory
  • Academic publishing
  • Citation metrics
  • Mathematical physics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software