AttributesValues
type
value
  • Abstract Some ideas are presented about a geometric motivation of the apparent capacity of generalized logistic equations to describe the outbreak of quite many epidemics, possibly including that of the COVID-19 infection. This interpretation pivots on the complex, possibly fractal, structure of the locus describing the “contagion event set”, and on what can be learnt from the models of trophic webs with “herd behaviour”. Under the hypothesis that the total number of cases, as a function of time, is fitted by a solution of the Generalized Richards Model, it is argued that the exponents appearing in that differential equation, usually determined empirically, represent the geometric signature of the non-space filling, network-like locus on which contagious contacts take place.
Subject
  • Zoonoses
  • Epidemics
  • Viral respiratory tract infections
  • Topology
  • COVID-19
  • Herding
  • Behavioral finance
  • Biological hazards
  • Computational fields of study
  • Occupational safety and health
  • Group processes
  • Mathematical structures
  • Ecological connectivity
  • Trophic ecology
  • Fractals
  • Crowd psychology
  • Behavioral ecology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software