AttributesValues
type
value
  • Abstract Often, when modeling infectious disease spread, the complex network through which the disease propagates is approximated by simplified spatial information. Here, we simulate epidemic spread through various contact networks and fit spatial-based models in a Bayesian framework using Markov chain Monte Carlo methods. These spatial models are individual-level models which account for the spatio-temporal dynamics of infectious disease. The focus here is on choosing a spatial model which best predicts the true probabilities of infection, as well as determining under which conditions such spatial models fail. Spatial models tend to predict infection probability reasonably well when disease spread is propagated through contact networks in which contacts are only within a certain distance of each other. If contacts exist over long distances, the spatial models tend to perform worse when compared to the network model.
Subject
  • Epidemiology
  • Infectious diseases
  • Geography
  • Network theory
  • Mathematical and quantitative methods (economics)
  • Scientific modeling
  • Spatial data analysis
  • Statistical data types
  • Cartography
  • Mathematical and theoretical biology
  • Geographic data and information
  • Geostatistics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software