AttributesValues
type
value
  • Surface stress is a versatile and efficient means to study various physical, chemical, biochemical and biological processes. This work focuses on developing high sensitive piezoresistive microcantilever designs to study surface stress. The cantilevers are made of silicon with rectangular holes at their base that also circumscribe a piezoresistor sensing element. To find the optimum design, the effects of change in cantilever width, rectangular hole length and type of dopant on mechanical properties like deflection, frequency and maximum stress are characterised using finite element analysis software. The surface stress sensitivity characteristics of the different cantilever designs is ascertained by applying a surface stress on their top surfaces. Results show that the sensitivity is increased by increasing the cantilever width as well as the length of the hole and the sensitivity of p-type designs is more than two times the n-type.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software