AttributesValues
type
value
  • A language independent deep learning (DL) architecture for machine translation (MT) evaluation is presented. This DL architecture aims at the best choice between two MT (S1, S2) outputs, based on the reference translation (Sr) and the annotation score. The outputs were generated from a statistical machine translation (SMT) system and a neural machine translation (NMT) system. The model applied in two language pairs: English - Greek (EN-EL) and English - Italian (EN-IT). In this paper, a variety of experiments with different parameter configurations is presented. Moreover, linguistic features, embeddings representation and natural language processing (NLP) metrics (BLEU, METEOR, TER, WER) were tested. The best score was achieved when the proposed model used source segments (SSE) information and the NLP metrics set. Classification accuracy has increased up to 5% (compared to previous related work) and reached quite satisfactory results for the Kendall τ score.
subject
  • Southern European countries
  • Artificial intelligence
  • Artificial intelligence applications
  • Programming language classification
  • Computational linguistics
  • Machine translation
  • Tasks of natural language processing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software