AttributesValues
type
value
  • The droplet has a limited travel distance. Nonetheless, especially in the indoor public space the air flow can propagate the droplet to travel long distance. Based on this situation, this paper aims to study the relationships of seat configuration-social distance-air flow-droplet dispersions. The analysis was based on the computational fluid dynamic (CFD) using lattice Boltzmann model (LBM). The result confirms that by modifying public space configuration in this case by providing more space and increasing seating distance can reduce the vulnerability towards droplet dispersions. Whereas, providing shield including adding protection is far more effective in avoiding dispersions. The public space reconfiguration including increasing seat distance and reducing seating capacity also has an effect in reducing the indoor CO2. Capacity reduction from full capacity to 30% can decrease the CO2 from 5722 to 2144 ppm.
Subject
  • Computational fluid dynamics
  • Aerodynamics
  • Computational fields of study
  • Continuum mechanics
  • Fluid dynamics
  • Liquids
  • Alcohol measurement
  • Lattice models
  • Piping
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software