AttributesValues
type
value
  • In this paper, we propose a machine learning technics and SIR models (deterministic and stochastic cases) with numerical approximations to predict the number of cases infected with the COVID-19, for both in few days and the following three weeks. Like in [1] and based on the public data from [2], we estimate parameters and make predictions to help on how to find concrete actions to control the situation. Under optimistic estimation, the pandemic in some countries will end soon, while for most of the countries in the world, the hit of anti-pandemic will be no later than the beginning of May.
Subject
  • Mathematical physics
  • Scientific modeling
  • Engineering occupations
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software