About: Distress propagation occurs in connected networks, its rate and extent being dependent on network topology. To study this, we choose economic production networks as a paradigm. An economic network can be examined at many levels: linkages among individual agents (microscopic), among firms/sectors (mesoscopic) or among countries (macroscopic). New emergent dynamical properties appear at every level, so the granularity matters. For viral epidemics, even an individual node may act as an epicenter of distress and potentially affect the entire network. Economic networks, however, are known to be immune at the micro-levels and more prone to failure in the meso/macro-levels. We propose a dynamical interaction model to characterize the mechanism of distress propagation, across different modules of a network, initiated at different epicenters. Vulnerable modules often lead to large degrees of destabilization. We demonstrate our methodology using a unique empirical data-set of input-output linkages across 0.14 million firms in one administrative state of India, a developing economy. The network has multiple hub-and-spoke structures that exhibits moderate disassortativity, which varies with the level of coarse-graining. The novelty lies in characterizing the production network at different levels of granularity or modularity, and finding `too-big-to-fail' modules supersede `too-central-to-fail' modules in distress propagation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Distress propagation occurs in connected networks, its rate and extent being dependent on network topology. To study this, we choose economic production networks as a paradigm. An economic network can be examined at many levels: linkages among individual agents (microscopic), among firms/sectors (mesoscopic) or among countries (macroscopic). New emergent dynamical properties appear at every level, so the granularity matters. For viral epidemics, even an individual node may act as an epicenter of distress and potentially affect the entire network. Economic networks, however, are known to be immune at the micro-levels and more prone to failure in the meso/macro-levels. We propose a dynamical interaction model to characterize the mechanism of distress propagation, across different modules of a network, initiated at different epicenters. Vulnerable modules often lead to large degrees of destabilization. We demonstrate our methodology using a unique empirical data-set of input-output linkages across 0.14 million firms in one administrative state of India, a developing economy. The network has multiple hub-and-spoke structures that exhibits moderate disassortativity, which varies with the level of coarse-graining. The novelty lies in characterizing the production network at different levels of granularity or modularity, and finding `too-big-to-fail' modules supersede `too-central-to-fail' modules in distress propagation.
Subject
  • Evidence
  • Network theory
  • Quantum mechanics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software