About: We define data analyses to monitor a change in R, the average number of secondary cases caused by a typical infected individual. The input dataset consists of incident cases partitioned into outbreaks, each initiated from a single index case. We split the input dataset into two successive subsets, to evaluate two successive R values, according to the Bayesian paradigm. We used the Bayes factor between the model with two different R values and that with a single R value to justify that the change in R is statistically significant. We validated our approach using simulated data, generated using known R. In particular, we found that claiming two distinct R values may depend significantly on the number of outbreaks. We then reanalyzed data previously studied by Jansen et al. [Jansen et al. Science 301 (5634), 804], concerning the effective reproduction number for measles in the UK, during 1995–2002. Our analyses showed that the 1995–2002 dataset should be divided into two separate subsets for the periods 1995–1998 and 1999–2002. In contrast, Jansen et al. take this splitting point as input of their analysis. Our estimated effective reproduction numbers R are in good agreement with those found by Jansen et al. In conclusion, our methodology for detecting temporal changes in R using outbreak-size data worked satisfactorily with both simulated and real-world data. The methodology may be used for updating R in real time, as surveillance outbreak data become available.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • We define data analyses to monitor a change in R, the average number of secondary cases caused by a typical infected individual. The input dataset consists of incident cases partitioned into outbreaks, each initiated from a single index case. We split the input dataset into two successive subsets, to evaluate two successive R values, according to the Bayesian paradigm. We used the Bayes factor between the model with two different R values and that with a single R value to justify that the change in R is statistically significant. We validated our approach using simulated data, generated using known R. In particular, we found that claiming two distinct R values may depend significantly on the number of outbreaks. We then reanalyzed data previously studied by Jansen et al. [Jansen et al. Science 301 (5634), 804], concerning the effective reproduction number for measles in the UK, during 1995–2002. Our analyses showed that the 1995–2002 dataset should be divided into two separate subsets for the periods 1995–1998 and 1999–2002. In contrast, Jansen et al. take this splitting point as input of their analysis. Our estimated effective reproduction numbers R are in good agreement with those found by Jansen et al. In conclusion, our methodology for detecting temporal changes in R using outbreak-size data worked satisfactorily with both simulated and real-world data. The methodology may be used for updating R in real time, as surveillance outbreak data become available.
Subject
  • Epidemiology
  • Pediatrics
  • Data analysis
  • Model selection
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software