About: The basic reproductive number --- R0 --- is one of the most common and most commonly misapplied numbers in public health. Although often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that two different pathogens can exhibit, even when they have the same R0. Here, we show how to predict outbreak size using estimates of the distribution of secondary infections, leveraging both its average R0 and the underlying heterogeneity. To do so, we reformulate and extend a classic result from random network theory~/cite{Newman2001} that relies on contact tracing data to simultaneously determine the first moment (R0) and the higher moments (representing the heterogeneity) in the distribution of secondary infections. Further, we show the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19, the uncertainty in outbreak size ranges dramatically. %, in the case of COVID-19 from 10-70/% of susceptible individuals. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R0 when predicting epidemic size.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The basic reproductive number --- R0 --- is one of the most common and most commonly misapplied numbers in public health. Although often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that two different pathogens can exhibit, even when they have the same R0. Here, we show how to predict outbreak size using estimates of the distribution of secondary infections, leveraging both its average R0 and the underlying heterogeneity. To do so, we reformulate and extend a classic result from random network theory~/cite{Newman2001} that relies on contact tracing data to simultaneously determine the first moment (R0) and the higher moments (representing the heterogeneity) in the distribution of secondary infections. Further, we show the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19, the uncertainty in outbreak size ranges dramatically. %, in the case of COVID-19 from 10-70/% of susceptible individuals. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R0 when predicting epidemic size.
subject
  • Infectious diseases
  • Public health
  • Pandemics
  • COVID-19
  • Network theory
  • Chemical reactions
  • Scientific terminology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software