AttributesValues
type
value
  • The understanding of epidemics on networks has greatly benefited from the recent application of message-passing approaches, which allow us to derive exact results for irreversible spreading (i.e., diseases with permanent acquired immunity) in locally treelike topologies. This success has suggested the application of the same approach to recurrent-state epidemics, for which an individual can contract the epidemic and recover repeatedly. The underlying assumption is that backtracking paths (i.e., an individual is reinfected by a neighbor he or she previously infected) do not play a relevant role. In this paper we show that this is not the case for recurrent-state epidemics since the neglect of backtracking paths leads to a formula for the epidemic threshold that is qualitatively incorrect in the large size limit. Moreover, we define a modified recurrent-state dynamics which explicitly forbids direct backtracking events and show that this modification completely upsets the phenomenology.
Subject
  • Immune system
  • Epidemics
  • Viral respiratory tract infections
  • Pattern matching
  • Biological hazards
  • Search algorithms
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software