About: The pollutant behavior in and around a naturally ventilated building requires to be investigated quantitatively as the growing concern on air quality within the built environment. The objective of the present study is to further investigate the wind induced inter-flat pollutant transmission and cross contamination routes in typical buildings in Shanghai. In this paper, a set of experiments was carried out in a boundary layer wind tunnel using a 1:30 reduced scale model that represented the typical configuration of rectangular multi-storey residential buildings. Sulfur hexafluoride (SF(6)) was employed as a tracer gas in the wind tunnel tests. Two natural ventilation modes, single-sided ventilation and cross ventilation were considered. The conditions under prevailing wind direction with different source locations on the windward side were compared. The pressure coefficients on all of the building façades and tracer gas concentration distributions were monitored and analysed. The experimental results elucidated that contaminant released from windward units could spread vertically and horizontally to other units on the source façade and downstream units. The source location was a significant influence factor on the pollutant concentration in various units. In the single-sided ventilated building, the infected risks of leeward units were even higher than those in some windward units. In the cross ventilated building, the vertical transmission could be suppressed and the horizontal transmission was reinforced. The study is helpful for further understanding of the inter-flat airborne transmission within an isolated building.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The pollutant behavior in and around a naturally ventilated building requires to be investigated quantitatively as the growing concern on air quality within the built environment. The objective of the present study is to further investigate the wind induced inter-flat pollutant transmission and cross contamination routes in typical buildings in Shanghai. In this paper, a set of experiments was carried out in a boundary layer wind tunnel using a 1:30 reduced scale model that represented the typical configuration of rectangular multi-storey residential buildings. Sulfur hexafluoride (SF(6)) was employed as a tracer gas in the wind tunnel tests. Two natural ventilation modes, single-sided ventilation and cross ventilation were considered. The conditions under prevailing wind direction with different source locations on the windward side were compared. The pressure coefficients on all of the building façades and tracer gas concentration distributions were monitored and analysed. The experimental results elucidated that contaminant released from windward units could spread vertically and horizontally to other units on the source façade and downstream units. The source location was a significant influence factor on the pollutant concentration in various units. In the single-sided ventilated building, the infected risks of leeward units were even higher than those in some windward units. In the cross ventilated building, the vertical transmission could be suppressed and the horizontal transmission was reinforced. The study is helpful for further understanding of the inter-flat airborne transmission within an isolated building.
Subject
  • Human geography
  • Metropolitan areas of China
  • Infectious diseases by mode of transmission
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software