About: Background: Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency screening test is essential for malaria treatment, control, and elimination programs. G6PD deficient individuals are at high risk of severe hemolysis when given anti-malarial drugs such as primaquine, quinine, other sulphonamide-containing medicines, and chloroquine, which has recently been shown to be potent for the treatment of coronavirus disease (COVID-19). We evaluated the geographical accessibility to POC testing for G6PD deficiency in Ghana, a malaria-endemic country. Methods: We obtained the geographic information of 100 randomly sampled clinics previously included in a cross-sectional survey. We also obtained the geolocated data of all public hospitals providing G6PD deficiency testing services in the region. Using ArcGIS 10.5, we quantified geographical access to G6PD deficiency screening test and identified clinics as well as visualize locations with poor access for targeted improvement. The travel time was estimated using an assumed speed of 20 km per hour. Findings: Of the 100 clinics, 58% were Community-based Health Planning and Services facilities, and 42% were sub-district health centers. The majority (92%) were Ghana Health Service facilities, and the remaining 8% were Christian Health Association of Ghana facilities. Access to G6PD deficiency screening test was varied across the districts, and G6PD deficiency screening test was available in all eight public hospitals. This implies that the health facility-to-population ratio for G6PD deficiency testing service was approximately 1:159,210 (8/1,273,677) population. The spatial analysis quantified the current mean distance to a G6PD deficiency testing service from all locations in the region to be 34 ± 14 km, and travel time (68 ± 27 min). The estimated mean distance from a clinic to a district hospital for G6PD deficiency testing services was 15 ± 11 km, and travel time (46 ± 33 min). Conclusion: Access to POC testing for G6PD deficiency in Ghana was poor. Given the challenges associated with G6PD deficiency, it would be essential to improve access to G6PD deficiency POC testing to facilitate administration of sulphadoxine-pyrimethamine to pregnant women, full implementation of the malaria control program in Ghana, and treatment of COVID-19 patients with chloroquine in malaria-endemic countries. To enable the World Health Organization include appropriate G6PD POC diagnostic tests in its list of essential in-vitro diagnostics for use in resource-limited settings, we recommend a wider evaluation of available POC diagnostic tests for G6PD deficiency, particularly in malaria-endemic countries.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency screening test is essential for malaria treatment, control, and elimination programs. G6PD deficient individuals are at high risk of severe hemolysis when given anti-malarial drugs such as primaquine, quinine, other sulphonamide-containing medicines, and chloroquine, which has recently been shown to be potent for the treatment of coronavirus disease (COVID-19). We evaluated the geographical accessibility to POC testing for G6PD deficiency in Ghana, a malaria-endemic country. Methods: We obtained the geographic information of 100 randomly sampled clinics previously included in a cross-sectional survey. We also obtained the geolocated data of all public hospitals providing G6PD deficiency testing services in the region. Using ArcGIS 10.5, we quantified geographical access to G6PD deficiency screening test and identified clinics as well as visualize locations with poor access for targeted improvement. The travel time was estimated using an assumed speed of 20 km per hour. Findings: Of the 100 clinics, 58% were Community-based Health Planning and Services facilities, and 42% were sub-district health centers. The majority (92%) were Ghana Health Service facilities, and the remaining 8% were Christian Health Association of Ghana facilities. Access to G6PD deficiency screening test was varied across the districts, and G6PD deficiency screening test was available in all eight public hospitals. This implies that the health facility-to-population ratio for G6PD deficiency testing service was approximately 1:159,210 (8/1,273,677) population. The spatial analysis quantified the current mean distance to a G6PD deficiency testing service from all locations in the region to be 34 ± 14 km, and travel time (68 ± 27 min). The estimated mean distance from a clinic to a district hospital for G6PD deficiency testing services was 15 ± 11 km, and travel time (46 ± 33 min). Conclusion: Access to POC testing for G6PD deficiency in Ghana was poor. Given the challenges associated with G6PD deficiency, it would be essential to improve access to G6PD deficiency POC testing to facilitate administration of sulphadoxine-pyrimethamine to pregnant women, full implementation of the malaria control program in Ghana, and treatment of COVID-19 patients with chloroquine in malaria-endemic countries. To enable the World Health Organization include appropriate G6PD POC diagnostic tests in its list of essential in-vitro diagnostics for use in resource-limited settings, we recommend a wider evaluation of available POC diagnostic tests for G6PD deficiency, particularly in malaria-endemic countries.
Subject
  • Plasmodium
  • Disulfiram-like drugs
  • EC 1.1.1
  • RTT
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software