About: Previous studies have raised the possibility of reproductive and developmental changes in miniature swine chronically exposed to a strong 60‐Hz electric field. Two replicate experiments on rats were performed to determine if similar changes could be detected in animals exposed under a comparable regime, which was based on average, induced‐current densities and on the chronology of reproductive development, as dosimetrically and biologically scaled. Beginning at three months of age, female rats of the F(0) generation and their subsequent offspring were chronically exposed to a 60‐Hz electric field (100 kV/ m unperturbed) for 19 h/day for the duration of experimentation. After four weeks of exposure, F(0) female rats were mated to unexposed male rats during the field‐off period. No significant developmental effects were detected in their litters, confirming our previous results with swine and rats. The F(0) females were mated for a second time at 7.2 months of age, and the fetuses were evaluated shortly before term. In the first experiments, the incidence of intrauterine mortality was significantly less in exposed than in sham‐exposed litters, and there was a tendency (P = 0.12) for an increased incidence of malformed fetuses in exposed litters. Neither end point was significantly affected in the second experiment. Copulatory behavior of the female F(1) offspring, which were bred at three months of age, was not affected in either experiment. There was a statistically significant decrease in the fertility of F(1) exposed females and a significant increase in the fraction of exposed litters with malformed fetuses in the first experiment; both end points were essentially the same in the sham and exposed groups of the second experiment. That the significant effects detected in the first experiment were not seen in the second may be attributed to random or biological variation. Alternatively, the finding may indicate that the response threshold for induction of malformations lies near 100 kV/m.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Previous studies have raised the possibility of reproductive and developmental changes in miniature swine chronically exposed to a strong 60‐Hz electric field. Two replicate experiments on rats were performed to determine if similar changes could be detected in animals exposed under a comparable regime, which was based on average, induced‐current densities and on the chronology of reproductive development, as dosimetrically and biologically scaled. Beginning at three months of age, female rats of the F(0) generation and their subsequent offspring were chronically exposed to a 60‐Hz electric field (100 kV/ m unperturbed) for 19 h/day for the duration of experimentation. After four weeks of exposure, F(0) female rats were mated to unexposed male rats during the field‐off period. No significant developmental effects were detected in their litters, confirming our previous results with swine and rats. The F(0) females were mated for a second time at 7.2 months of age, and the fetuses were evaluated shortly before term. In the first experiments, the incidence of intrauterine mortality was significantly less in exposed than in sham‐exposed litters, and there was a tendency (P = 0.12) for an increased incidence of malformed fetuses in exposed litters. Neither end point was significantly affected in the second experiment. Copulatory behavior of the female F(1) offspring, which were bred at three months of age, was not affected in either experiment. There was a statistically significant decrease in the fertility of F(1) exposed females and a significant increase in the fraction of exposed litters with malformed fetuses in the first experiment; both end points were essentially the same in the sham and exposed groups of the second experiment. That the significant effects detected in the first experiment were not seen in the second may be attributed to random or biological variation. Alternatively, the finding may indicate that the response threshold for induction of malformations lies near 100 kV/m.
Subject
  • Diabetes
  • Animal models
  • SI derived units
  • Electrostatics
  • Physical quantities
  • Electromagnetism
  • Units of frequency
  • Conservation Priority Breeds of the Livestock Conservancy
  • Heinrich Hertz
  • Feral pigs
  • Alessandro Volta
  • Natural history of Georgia (U.S. state)
  • Pig breeds originating in the United States
  • Pig landraces
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software