About: We aimed to analyze baseline socio-demographic and clinical factors associated with an increased likelihood of mortality in men and women with coronavirus disease (COVID-19). We conducted a retrospective cohort study (PRECOVID Study) on all 4412 individuals with laboratory-confirmed COVID-19 in Aragon, Spain, and followed them for at least 30 days from cohort entry. We described the socio-demographic and clinical characteristics of all patients of the cohort. Age-adjusted logistic regressions models were performed to analyze the likelihood of mortality based on demographic and clinical variables. All analyses were stratified by sex. Old age, specific diseases such as diabetes, acute myocardial infarction, or congestive heart failure, and dispensation of drugs like vasodilators, antipsychotics, and potassium-sparing agents were associated with an increased likelihood of mortality. Our findings suggest that specific comorbidities, mainly of cardiovascular nature, and medications at the time of infection could explain around one quarter of the mortality in COVID-19 disease, and that women and men probably share similar but not identical risk factors. Nonetheless, the great part of mortality seems to be explained by other patient- and/or health-system-related factors. More research is needed in this field to provide the necessary evidence for the development of early identification strategies for patients at higher risk of adverse outcomes.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • We aimed to analyze baseline socio-demographic and clinical factors associated with an increased likelihood of mortality in men and women with coronavirus disease (COVID-19). We conducted a retrospective cohort study (PRECOVID Study) on all 4412 individuals with laboratory-confirmed COVID-19 in Aragon, Spain, and followed them for at least 30 days from cohort entry. We described the socio-demographic and clinical characteristics of all patients of the cohort. Age-adjusted logistic regressions models were performed to analyze the likelihood of mortality based on demographic and clinical variables. All analyses were stratified by sex. Old age, specific diseases such as diabetes, acute myocardial infarction, or congestive heart failure, and dispensation of drugs like vasodilators, antipsychotics, and potassium-sparing agents were associated with an increased likelihood of mortality. Our findings suggest that specific comorbidities, mainly of cardiovascular nature, and medications at the time of infection could explain around one quarter of the mortality in COVID-19 disease, and that women and men probably share similar but not identical risk factors. Nonetheless, the great part of mortality seems to be explained by other patient- and/or health-system-related factors. More research is needed in this field to provide the necessary evidence for the development of early identification strategies for patients at higher risk of adverse outcomes.
Subject
  • Southern European countries
  • Cardiovascular physiology
  • Organ failure
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software