About: Predicting Illness Severity and Short-Term Outcomes of COVID-19: A Retrospective Cohort Study in China   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
has title
  • Predicting Illness Severity and Short-Term Outcomes of COVID-19: A Retrospective Cohort Study in China
Creator
  • Chen, Li
  • Li, Jianming
  • Liu, Yingxia
  • Peng, Ling
  • Wang, Fuxiang
  • Yang, Liuqing
  • Jiang, Xiao
  • Wu, Weibo
  • Cao, Mengli
  • Chen, Chuming
  • Feng, Shiyan
  • Liang, Zhichao
  • Li, Yinfeng
  • Liu, Quanying
  • Meng, Lingxiang
  • Wang, Haihui
  • Wu, Huishan
  • Zhang, Peiyan
  • Zhao, Fang
Source
  • Elsevier; PMC
abstract
has issue date
bibo:doi
  • 10.1016/j.xinn.2020.04.007
has license
  • els-covid
sha1sum (hex)
  • 18aa00ecfa05a716590998599ff9ffa9a404d622
schema:url
resource representing a document's title
has PubMed Central identifier
  • PMC7237911
schema:publication
  • The Innovation
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software