About: The detection of low virus concentrations in biological matrices, especially stool samples, is facing significant limitations as far as common diagnostic methods (enzyme‐linked‐immunosorbent assay (ELISA) or quantitative real‐time PCR (qPCR)) are considered. Here the development of a new immuno real‐time PCR (iPCR) is described and its performance in the detection of human adenoviruses (HAdVs) in spiked stools is compared with those of ELISA and qPCR assays. For the iPCR, detection of the sandwich formed by the complexation of capture antibody‐antigen‐detection antibody was performed by qPCR thanks to the substitution of peroxydase by a chimeric DNA. This modification increased the detection sensitivity 200‐fold compared to ELISA. The direct qPCR results revealed that only 0.3–9.5% of the spiked HAdV were detectable, resulting from important losses of DNA occurring at the extraction step. This step was not necessary in the iPCR workflow, avoiding this drawback. The losses of viral particles occurred at the elution step from the stool only. The recovery rate of the iPCR was thus better and ranged between 21 and 54%. As a result, iPCR enabled the detection of lower virus concentrations in stool samples compared to those detected by ELISA and qPCR. The iPCR could be considered as a ‘hyper sensitive ELISA’ for early detection of HAdV infections, especially in the case of immunocompromised patients after haematopoietic stem cell transplant.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The detection of low virus concentrations in biological matrices, especially stool samples, is facing significant limitations as far as common diagnostic methods (enzyme‐linked‐immunosorbent assay (ELISA) or quantitative real‐time PCR (qPCR)) are considered. Here the development of a new immuno real‐time PCR (iPCR) is described and its performance in the detection of human adenoviruses (HAdVs) in spiked stools is compared with those of ELISA and qPCR assays. For the iPCR, detection of the sandwich formed by the complexation of capture antibody‐antigen‐detection antibody was performed by qPCR thanks to the substitution of peroxydase by a chimeric DNA. This modification increased the detection sensitivity 200‐fold compared to ELISA. The direct qPCR results revealed that only 0.3–9.5% of the spiked HAdV were detectable, resulting from important losses of DNA occurring at the extraction step. This step was not necessary in the iPCR workflow, avoiding this drawback. The losses of viral particles occurred at the elution step from the stool only. The recovery rate of the iPCR was thus better and ranged between 21 and 54%. As a result, iPCR enabled the detection of lower virus concentrations in stool samples compared to those detected by ELISA and qPCR. The iPCR could be considered as a ‘hyper sensitive ELISA’ for early detection of HAdV infections, especially in the case of immunocompromised patients after haematopoietic stem cell transplant.
Subject
  • Virology
  • Polymerase chain reaction
  • Coordination chemistry
  • Laboratory techniques
  • Molecular biology
  • Nosology
  • Real-time technology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software