AttributesValues
type
value
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in thousands of deaths in the world. Information about prediction model of prognosis of SARS-CoV-2 infection is scarce. We used machine learning for processing laboratory findings of 110 patients with SARS-CoV-2 pneumonia (including 51 non-survivors and 59 discharged patients). The maximum relevance minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator logistic regression model were used for selection of laboratory features. Seven laboratory features selected in the model were: prothrombin activity, urea, white blood cell, interleukin-2 receptor, indirect bilirubin, myoglobin, and fibrinogen degradation products. The signature constructed using the seven features had 98% [93%, 100%] sensitivity and 91% [84%, 99%] specificity in predicting outcome of SARS-CoV-2 pneumonia. Thus it is feasible to establish an accurate prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings.
subject
  • Zoonoses
  • Prediction
  • COVID-19
  • Cofactors
  • Fertilizers
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software