AttributesValues
type
value
  • We study a susceptible-infected-removed (SIR) model with multiple seeds on a regular random graph. Many researchers have studied the epidemic threshold of epidemic models above which a global outbreak can occur, starting from an infinitesimal fraction of seeds. However, there have been few studies of epidemic models with finite fractions of seeds. The aim of this paper is to clarify what happens in phase transitions in such cases. The SIR model in networks exhibits two percolation transitions. We derive the percolation transition points for the SIR model with multiple seeds to show that as the infection rate increases epidemic clusters generated from each seed percolate before a single seed can induce a global outbreak.
subject
  • Epidemics
  • Epidemiology
  • Pandemics
  • Biological hazards
  • Doomsday scenarios
  • Economic problems
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software