AttributesValues
type
value
  • Graph Neural Networks (GNNs) have recently caught great attention and achieved significant progress in graph-level applications. In order to handle graphs with different features and sizes, we propose a novel graph neural network, which we call HaarNet, to predict graph labels with interrelated convolution and pooling strategies. Similar to some existing routines, the model assembles unified graph-level representations from samples by first adopting graph convolutional layers to extract mutual information followed by graph pooling layers to downsample graph resolution. By a sequence of clusterings, we embed the intrinsic topological information of each graph into the GNN. Through the fast Haar transformation, we made our contribution to forming a smooth workflow that learns multi-scale graph representation with redundancy removed. As a result, our proposed framework obtains notable accuracy gains without sacrificing performance stability. Extensive experiments validate the superiority on graph classification and regression tasks, where our proposed HaarNet outperforms various existing GNN models, especially on big data sets.
Subject
  • Information theory
  • Graph theory
  • Distributed computing problems
  • Business process
  • Artificial neural networks
  • Computational neuroscience
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software