About: The latest Coronavirus (COVID-19) has become an infectious disease that causes millions of people to infect. Effective short-term prediction models are designed to estimate the number of possible events. The data obtained from 30th January to 26 April, 2020 and from 27th April 2020 to 11th May 2020 as modelling and forecasting samples, respectively. Spatial distribution of disease risk analysis is carried out using weighted overlay analysis in GIS platform. The epidemiologic pattern in the prevalence and incidence of COVID-2019 is forecasted with the Autoregressive Integrated Moving Average (ARIMA). We assessed cumulative confirmation cases COVID-19 in Indian states with a high daily incidence in the task of time-series forecasting. Such efficiency metrics such as an index of increasing results, mean absolute error (MAE), and a root mean square error (RMSE) are the out-of-samples for the prediction precision of model. Results shows west and south of Indian district are highly vulnerable for COVID-2019. The accuracy of ARIMA models in forecasting future epidemic of COVID-2019 proved the effectiveness in epidemiological surveillance. For more in-depth studies, our analysis may serve as a guide for understanding risk attitudes and social media interactions across countries.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The latest Coronavirus (COVID-19) has become an infectious disease that causes millions of people to infect. Effective short-term prediction models are designed to estimate the number of possible events. The data obtained from 30th January to 26 April, 2020 and from 27th April 2020 to 11th May 2020 as modelling and forecasting samples, respectively. Spatial distribution of disease risk analysis is carried out using weighted overlay analysis in GIS platform. The epidemiologic pattern in the prevalence and incidence of COVID-2019 is forecasted with the Autoregressive Integrated Moving Average (ARIMA). We assessed cumulative confirmation cases COVID-19 in Indian states with a high daily incidence in the task of time-series forecasting. Such efficiency metrics such as an index of increasing results, mean absolute error (MAE), and a root mean square error (RMSE) are the out-of-samples for the prediction precision of model. Results shows west and south of Indian district are highly vulnerable for COVID-2019. The accuracy of ARIMA models in forecasting future epidemic of COVID-2019 proved the effectiveness in epidemiological surveillance. For more in-depth studies, our analysis may serve as a guide for understanding risk attitudes and social media interactions across countries.
Subject
  • Zoonoses
  • Demographics
  • Viral respiratory tract infections
  • COVID-19
  • Errors and residuals
  • Occupational safety and health
  • Time series models
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software