AttributesValues
type
value
  • Timely interventions and early preparedness of healthcare resources are crucial measures to tackle the mbox{COVID-19} disease. To aid these efforts, we developed the Mobility-Augmented SEIR model (mbox{MA-SEIR}) that leverages Google's aggregate and anonymized mobility data to augment classic compartmental models. We show in a retrospective analysis how this method can be applied at an early stage in the mbox{COVID-19} epidemic to forecast its subsequent spread and onset in different geographic regions, with minimal parameterization of the model. This provides insight into the role of near real-time aggregate mobility data in disease spread modeling by quantifying substantial changes in how populations move both locally and globally. These changes would be otherwise very hard to capture using less timely data.
Subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Occupational safety and health
  • Technology companies based in the San Francisco Bay Area
  • Multinational companies headquartered in the United States
  • Eyewear companies of the United States
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software