AttributesValues
type
value
  • Virus spread prediction is very important to actively plan actions. Viruses are unfortunately not easy to control, since speed and reach of spread depends on many factors from environmental to social ones. In this article we present research results on developing Neural Network model for COVID-19 spread prediction. Our predictor is based on classic approach with deep architecture which learns by using NAdam training model. For the training we have used official data from governmental and open repositories. Results of prediction are done for countries but also regions to provide possibly wide spectrum of values about predicted COVID-19 spread. Results of the proposed model show high accuracy, which in some cases reaches above 99%.
subject
  • Research
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Classification algorithms
  • Occupational safety and health
  • National holidays
  • Summer traditions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software