AttributesValues
type
value
  • Medical image segmentation is a fundamental and challenging problem for analyzing medical images due to the approximate pixel values of adjacent tissues in boundary and the non-linear feature between pixels. Although fully convolutional neural networks such as U-Net has demonstrated impressive performance on medical image segmentation, distinguishing subtle features between different categories after pooling layers is still a difficult task, which affects the segmentation accuracy. In this paper, we propose a Mini-Inception-Residual-Dense (MIRD) network named MIRD-Net to deal with this problem. The key point of our proposed MIRD-Net is MIRD Block. It takes advantage of Inception, Residual Block (RB) and Dense Block (DB), aiming to make the network obtain more features to help improve the segmentation accuracy. There is no pooling layer in MIRD-Net. Such a design avoids loss of information during forward propagation. Experimental results show that our framework significantly outperforms U-Net in six different image segmentation tasks and its parameters are only about 1/50 of U-Net.
Subject
  • Medical physics
  • Digital geometry
  • British science fiction thriller films
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software