About: At the heart of the phenome-to-genome approach is high throughput assays, which are liable to produce false results. This risk can be mitigated by minimizing the sample bias, specifically, recycling the same tissue specimen for both phenotypic and genotypic investigations. Therefore, our aim is to suggest a methodology of obtaining robust results from frozen specimens of compromised quality, particularly if the sample is produced in conditions with limited resources. For example, generating samples at the International Space Station (ISS) is challenging because the time and laboratory footprint allotted to a project can get expensive. In an effort to be economical with available resources, snap-frozen euthanized mice are the straightforward solution; however, this method increases the risk of temperature abuse during the thawing process at the beginning of the tissue collection. We found that prolonged immersion of snap frozen mouse carcass in 10% neutral buffered formalin at 4°C yielded minimal microscopic signs of ice crystallization and delivered tissues with histomorphology that is optimal for hematoxylin and eosin (H&E) staining and fixation on glass slides. We further optimized a method to sequester the tissue specimen from the H&E slides using an incubator shaker. Using this method, we were able to recover an optimal amount of RNA that could be used for downstream transcriptomics assays. Overall, we demonstrated a protocol that enables us to maximize scientific values from tissues collected in austere condition. Furthermore, our protocol can suggest an improvement in the spatial resolution of transcriptomic assays.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • At the heart of the phenome-to-genome approach is high throughput assays, which are liable to produce false results. This risk can be mitigated by minimizing the sample bias, specifically, recycling the same tissue specimen for both phenotypic and genotypic investigations. Therefore, our aim is to suggest a methodology of obtaining robust results from frozen specimens of compromised quality, particularly if the sample is produced in conditions with limited resources. For example, generating samples at the International Space Station (ISS) is challenging because the time and laboratory footprint allotted to a project can get expensive. In an effort to be economical with available resources, snap-frozen euthanized mice are the straightforward solution; however, this method increases the risk of temperature abuse during the thawing process at the beginning of the tissue collection. We found that prolonged immersion of snap frozen mouse carcass in 10% neutral buffered formalin at 4°C yielded minimal microscopic signs of ice crystallization and delivered tissues with histomorphology that is optimal for hematoxylin and eosin (H&E) staining and fixation on glass slides. We further optimized a method to sequester the tissue specimen from the H&E slides using an incubator shaker. Using this method, we were able to recover an optimal amount of RNA that could be used for downstream transcriptomics assays. Overall, we demonstrated a protocol that enables us to maximize scientific values from tissues collected in austere condition. Furthermore, our protocol can suggest an improvement in the spatial resolution of transcriptomic assays.
Subject
  • Histology
  • Recycling
  • Polymorphism (biology)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software