About: Infecting large portions of the global population, seasonal influenza is a major burden on societies around the globe. While the global source sink dynamics of the different seasonal influenza viruses have been studied intensively, it’s local spread remains less clear. In order to improve our understanding of how influenza is transmitted on a city scale, we collected an extremely densely sampled set of influenza sequences alongside patient metadata. To do so, we sequenced influenza viruses isolated from patients of two different hospitals, as well as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The genetic sequences reveal that repeated introductions into the city drove the influenza season. We then reconstruct how the effective reproduction number changed over the course of the season. We find trends in transmission dynamics correlated positively with trends in temperature, but not relative humidity nor school holidays. Alongside the genetic sequence data that allows us to see how individual cases are connected, we gathered patient information, such as the age or household status. Zooming into the local transmission outbreaks suggests that the elderly were to a large extent infected within their own transmission network, while school children likely drove the spread within the remaining transmission network. These patterns will be valuable to plan interventions combating the spread of respiratory diseases within cities given that similar patterns are observed for other influenza seasons and cities. Author summary As shown with the current SARS-CoV-2 pandemic, respiratory diseases can quickly spread around the globe. While it can be hugely important to understand how diseases spread around the globe, local spread is most often the main driver of novel infections of respiratory diseases such as SARS-CoV-2 or influenza. We here use genetic sequence data alongside patient information to better understand what the drives the local spread of influenza by looking at the 2016/2017 influenza season in Basel, Switzerland as an example. The genetic sequence data allows us to reconstruct the how the transmission dynamics changed over the course of the season, which we correlate to changes, but not humidity or school holidays. Additionally, the genetic sequence data allows us to see how individual cases are connected. Using patient information, such as age and household status our analyses suggest that the elderly mainly transmit within their own transmission network. Additionally, they suggest that school aged children, but not pre-school aged children are important drivers of the local spread of influenza.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Infecting large portions of the global population, seasonal influenza is a major burden on societies around the globe. While the global source sink dynamics of the different seasonal influenza viruses have been studied intensively, it’s local spread remains less clear. In order to improve our understanding of how influenza is transmitted on a city scale, we collected an extremely densely sampled set of influenza sequences alongside patient metadata. To do so, we sequenced influenza viruses isolated from patients of two different hospitals, as well as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The genetic sequences reveal that repeated introductions into the city drove the influenza season. We then reconstruct how the effective reproduction number changed over the course of the season. We find trends in transmission dynamics correlated positively with trends in temperature, but not relative humidity nor school holidays. Alongside the genetic sequence data that allows us to see how individual cases are connected, we gathered patient information, such as the age or household status. Zooming into the local transmission outbreaks suggests that the elderly were to a large extent infected within their own transmission network, while school children likely drove the spread within the remaining transmission network. These patterns will be valuable to plan interventions combating the spread of respiratory diseases within cities given that similar patterns are observed for other influenza seasons and cities. Author summary As shown with the current SARS-CoV-2 pandemic, respiratory diseases can quickly spread around the globe. While it can be hugely important to understand how diseases spread around the globe, local spread is most often the main driver of novel infections of respiratory diseases such as SARS-CoV-2 or influenza. We here use genetic sequence data alongside patient information to better understand what the drives the local spread of influenza by looking at the 2016/2017 influenza season in Basel, Switzerland as an example. The genetic sequence data allows us to reconstruct the how the transmission dynamics changed over the course of the season, which we correlate to changes, but not humidity or school holidays. Additionally, the genetic sequence data allows us to see how individual cases are connected. Using patient information, such as age and household status our analyses suggest that the elderly mainly transmit within their own transmission network. Additionally, they suggest that school aged children, but not pre-school aged children are important drivers of the local spread of influenza.
Subject
  • Virology
  • Influenza
  • Medical genetics
  • Monopoly (economics)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software