About: Coronavirus disease 2019 (COVID-19) is an ongoing pandemic infectious disease outbreak that has significantly harmed and threatened the health and lives of millions or even billions of people. COVID-19 has also negatively impacted the social and economic activities of many countries significantly. With no approved vaccine available at this moment, extensive testing of COVID-19 viruses in people are essential for disease diagnosis, virus spread confinement, contact tracing, and determining right conditions for people to return to normal economic activities. Identifying people who have antibodies for COVID-19 can also help select persons who are suitable for undertaking certain essential activities or returning to workforce. However, the throughputs of current testing technologies for COVID-19 viruses and antibodies are often quite limited, which are not sufficient for dealing with COVID-19 viruses' anticipated fast oscillating waves of spread affecting a significant portion of the earth's population. In this paper, we propose to use compressed sensing (group testing can be seen as a special case of compressed sensing when it is applied to COVID-19 detection) to achieve high-throughput rapid testing of COVID-19 viruses and antibodies, which can potentially provide tens or even more folds of speedup compared with current testing technologies. The proposed compressed sensing system for high-throughput testing can utilize expander graph based compressed sensing matrices developed by us /cite{Weiyuexpander2007}.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Coronavirus disease 2019 (COVID-19) is an ongoing pandemic infectious disease outbreak that has significantly harmed and threatened the health and lives of millions or even billions of people. COVID-19 has also negatively impacted the social and economic activities of many countries significantly. With no approved vaccine available at this moment, extensive testing of COVID-19 viruses in people are essential for disease diagnosis, virus spread confinement, contact tracing, and determining right conditions for people to return to normal economic activities. Identifying people who have antibodies for COVID-19 can also help select persons who are suitable for undertaking certain essential activities or returning to workforce. However, the throughputs of current testing technologies for COVID-19 viruses and antibodies are often quite limited, which are not sufficient for dealing with COVID-19 viruses' anticipated fast oscillating waves of spread affecting a significant portion of the earth's population. In this paper, we propose to use compressed sensing (group testing can be seen as a special case of compressed sensing when it is applied to COVID-19 detection) to achieve high-throughput rapid testing of COVID-19 viruses and antibodies, which can potentially provide tens or even more folds of speedup compared with current testing technologies. The proposed compressed sensing system for high-throughput testing can utilize expander graph based compressed sensing matrices developed by us /cite{Weiyuexpander2007}.
Subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software