AttributesValues
type
value
  • Maps have long been been used to visualise estimates of spatial variables, in particular disease burden and risk. Predictions made using a geostatistical model have uncertainty that typically varies spatially. However, this uncertainty is difficult to map with the estimate itself and is often not included as a result, thereby generating a potentially misleading sense of certainty about disease burden or other important variables. To remedy this, we propose simultaneously visualising predictions and their associated uncertainty within a single map by varying pixel size. We illustrate our approach using examples of malaria incidence, but the method could be applied to predictions of any spatial continua with associated uncertainty.
subject
  • Plasmodium
  • Image processing
  • Public health
  • Global health
  • Health economics
  • Health informatics
  • Digital geometry
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software