AttributesValues
type
value
  • Research is increasingly becoming data-driven, and natural sciences are not an exception. In both biology and medicine, we are observing an exponential growth of structured data collections from experiments and population studies, enabling us to gain novel insights that would otherwise not be possible. However, these growing data sets pose a challenge for existing compute infrastructures since data is outgrowing limits within compute. In this work, we present the application of a novel approach, Memory-Driven Computing (MDC), in the life sciences. MDC proposes a data-centric approach that has been designed for growing data sizes and provides a composable infrastructure for changing workloads. In particular, we show how a typical pipeline for genomics data processing can be accelerated, and application modifications required to exploit this novel architecture. Furthermore, we demonstrate how the isolated evaluation of individual tasks misses significant overheads of typical pipelines in genomics data processing.
Subject
  • Genomics
  • Epidemiology
  • Growth curves
  • Data processing
  • Mathematical modeling
  • Clinical research
  • Computing
  • Exponentials
  • Ordinary differential equations
  • Natural sciences
  • Computer data
  • Statistical data sets
  • Branches of science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software