AttributesValues
type
value
  • The well-known Linear Chain Trick (LCT) allows modelers to derive mean field ODEs that assume gamma (Erlang) distributed passage times, by transitioning individuals sequentially through a chain of sub-states. The time spent in these states is the sum of $k$ exponentially distributed random variables, and is thus gamma (Erlang) distributed. The Generalized Linear Chain Trick (GLCT) extends this technique to the much broader phase-type family of distributions, which includes exponential, Erlang, hypoexponential, and Coxian distributions. Intuitively, phase-type distributions are the absorption time distributions for continuous time Markov chains (CTMCs). Here we review CTMCs and phase-type distributions, then illustrate how to use the GLCT to efficiently build mean field ODE models from underlying stochastic model assumptions. We generalize the Rosenzweig-MacArthur and SEIR models and show the benefits of using the GLCT to compute numerical solutions. These results highlight some practical benefits, and the intuitive nature, of using the GLCT to derive ODE models from first principles.
Subject
  • Exponentials
  • Continuous distributions
  • Programming languages
  • Erlang (programming language)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software