About: The estimation of thermodynamic parameters of N-Acetyl-L-cysteine (NAC) protonation were determined in NaCl(aq), (CH3)4NCl(aq), (C2H5)4NI(aq), employing various temperature and ionic strengths conditions, by potentiometric measurements. The interaction of NAC with some essential metal cations (e.g., Ca2+, Mg2+ and Zn2+) was investigated as well at 298.15 K in NaCl(aq) in the ionic strength range 0.1 ≤ I/mol dm−3 ≤ 1.0. The values of protonation constants at infinite dilution and at T = 298.15 K are: log K 1 H = 9.962 ± 0.005 (SH) and log K 2 H = 3.347 ± 0.008 (COO-H). In the presence of a background electrolyte, both log K 1 H and log K 2 H values followed the trend (C2H5)4NI ≥ (CH3)4NCl ≥ NaCl. The differences in the values of protonation constants among the three ionic media were interpreted in terms of variation of activity coefficients and formation of weak complexes. Accordingly, the determination of the stability of 4 species, namely: NaL−, NaHL0 (aq), (CH3)4NL−, (CH3)4NHL0 (aq) was assessed. In addition, as regards the interactions of Mg2+, Ca2+ and Zn2+ with NAC, the main species where the ML0 (aq), ML(OH)−, and ML2 2−, that were found to be important in the chemical speciation of NAC in real multicomponent solutions. The whole set of the data collected may be crucial for the development of NAC-based materials for natural fluids selective decontamination from heavy metals.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The estimation of thermodynamic parameters of N-Acetyl-L-cysteine (NAC) protonation were determined in NaCl(aq), (CH3)4NCl(aq), (C2H5)4NI(aq), employing various temperature and ionic strengths conditions, by potentiometric measurements. The interaction of NAC with some essential metal cations (e.g., Ca2+, Mg2+ and Zn2+) was investigated as well at 298.15 K in NaCl(aq) in the ionic strength range 0.1 ≤ I/mol dm−3 ≤ 1.0. The values of protonation constants at infinite dilution and at T = 298.15 K are: log K 1 H = 9.962 ± 0.005 (SH) and log K 2 H = 3.347 ± 0.008 (COO-H). In the presence of a background electrolyte, both log K 1 H and log K 2 H values followed the trend (C2H5)4NI ≥ (CH3)4NCl ≥ NaCl. The differences in the values of protonation constants among the three ionic media were interpreted in terms of variation of activity coefficients and formation of weak complexes. Accordingly, the determination of the stability of 4 species, namely: NaL−, NaHL0 (aq), (CH3)4NL−, (CH3)4NHL0 (aq) was assessed. In addition, as regards the interactions of Mg2+, Ca2+ and Zn2+ with NAC, the main species where the ML0 (aq), ML(OH)−, and ML2 2−, that were found to be important in the chemical speciation of NAC in real multicomponent solutions. The whole set of the data collected may be crucial for the development of NAC-based materials for natural fluids selective decontamination from heavy metals.
Subject
  • Zinc
  • Thermodynamics
  • Reducing agents
  • Chemical elements
  • Dietary minerals
  • Identifiers
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software