About: Healthcare is among the sectors showing efforts in adopting cloud computing to its services considering the provided cost reduction and healthcare process efficiency. However, outsourcing patient’s sensitive data increases the concerns regarding security, privacy, and integrity of healthcare data. Therefore, there is a need for building a trust relationship between patients and e-health systems. In this paper, we propose a privacy-preserving framework, called Hybrid and Secure Data Sharing Architecture (HSDSA), to secure data storage in e-health systems. Our approach improves security in healthcare by maintaining the privacy and confidentiality of sensitive data and preventing threats. In fact, in the upload phase, Multi-cloud environment is used to store Rivest–Shamir–Adleman (RSA) encrypted medical records. We adopt a Shamir’s secret sharing approach for the distribution of shares to different independent cloud providers. In the retrieval phase, the reconstruction operation is based on the (t, n) strategy. To check the requester identity and to prove the hash possession, we used a zero-knowledge cryptography algorithm, namely the Schnorr algorithm. The patient has a total control over the generation and management of the decryption keys using Diffie-Hellman algorithm without relying on a trusted authority.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Healthcare is among the sectors showing efforts in adopting cloud computing to its services considering the provided cost reduction and healthcare process efficiency. However, outsourcing patient’s sensitive data increases the concerns regarding security, privacy, and integrity of healthcare data. Therefore, there is a need for building a trust relationship between patients and e-health systems. In this paper, we propose a privacy-preserving framework, called Hybrid and Secure Data Sharing Architecture (HSDSA), to secure data storage in e-health systems. Our approach improves security in healthcare by maintaining the privacy and confidentiality of sensitive data and preventing threats. In fact, in the upload phase, Multi-cloud environment is used to store Rivest–Shamir–Adleman (RSA) encrypted medical records. We adopt a Shamir’s secret sharing approach for the distribution of shares to different independent cloud providers. In the retrieval phase, the reconstruction operation is based on the (t, n) strategy. To check the requester identity and to prove the hash possession, we used a zero-knowledge cryptography algorithm, namely the Schnorr algorithm. The patient has a total control over the generation and management of the decryption keys using Diffie-Hellman algorithm without relying on a trusted authority.
subject
  • Confidentiality
  • Economic globalization
  • American science writers
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software