About: Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using NMR spectroscopy. The PIP-binding site was located on a highly dynamic α-helix that also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Highlights A viral PIP-binding site identified, validated and characterized PIP-binding site overlaps the known RNA-binding site PIP-binding site clusters PIPs and perhaps regulates conformation and function Duality of PIP- and RNA-binding sites may extend to other viruses In Brief The absence of conventional PIP-binding domains in viral proteins suggests unique structural solutions to this problem. Shengjuler et al. show that a viral RNA-binding site can be repurposed for PIP binding. PIP clustering can be achieved. The nature of the PIP may regulate protein conformation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using NMR spectroscopy. The PIP-binding site was located on a highly dynamic α-helix that also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Highlights A viral PIP-binding site identified, validated and characterized PIP-binding site overlaps the known RNA-binding site PIP-binding site clusters PIPs and perhaps regulates conformation and function Duality of PIP- and RNA-binding sites may extend to other viruses In Brief The absence of conventional PIP-binding domains in viral proteins suggests unique structural solutions to this problem. Shengjuler et al. show that a viral RNA-binding site can be repurposed for PIP binding. PIP clustering can be achieved. The nature of the PIP may regulate protein conformation.
Subject
  • Virology
  • Phospholipids
  • Viruses
  • Signal transduction
  • Viral proteins
  • DNA replication
  • Senescence
  • Structural biology
  • Protein structure
  • Chemical bonding
  • 1898 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software