About: Identifying the infection sources in a network, including the index cases that introduce a contagious disease into a population network, the servers that inject a computer virus into a computer network, or the individuals who started a rumor in a social network, plays a critical role in limiting the damage caused by the infection through timely quarantine of the sources. We consider the problem of estimating the infection sources and the infection regions (subsets of nodes infected by each source) in a network, based only on knowledge of which nodes are infected and their connections, and when the number of sources is unknown a priori. We derive estimators for the infection sources and their infection regions based on approximations of the infection sequences count. We prove that if there are at most two infection sources in a geometric tree, our estimator identifies the true source or sources with probability going to one as the number of infected nodes increases. When there are more than two infection sources, and when the maximum possible number of infection sources is known, we propose an algorithm with quadratic complexity to estimate the actual number and identities of the infection sources. Simulations on various kinds of networks, including tree networks, small-world networks and real world power grid networks, and tests on two real data sets are provided to verify the performance of our estimators.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Identifying the infection sources in a network, including the index cases that introduce a contagious disease into a population network, the servers that inject a computer virus into a computer network, or the individuals who started a rumor in a social network, plays a critical role in limiting the damage caused by the infection through timely quarantine of the sources. We consider the problem of estimating the infection sources and the infection regions (subsets of nodes infected by each source) in a network, based only on knowledge of which nodes are infected and their connections, and when the number of sources is unknown a priori. We derive estimators for the infection sources and their infection regions based on approximations of the infection sequences count. We prove that if there are at most two infection sources in a geometric tree, our estimator identifies the true source or sources with probability going to one as the number of infected nodes increases. When there are more than two infection sources, and when the maximum possible number of infection sources is known, we propose an algorithm with quadratic complexity to estimate the actual number and identities of the infection sources. Simulations on various kinds of networks, including tree networks, small-world networks and real world power grid networks, and tests on two real data sets are provided to verify the performance of our estimators.
Subject
  • Epidemiology
  • Infectious diseases
  • Network theory
  • Philosophical theories
  • Philosophy of culture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software