About: Mathematical models when applied to infectious disease data can provide extremely useful insights into the possible future impacts of potential emerging epidemics and how they might be best controlled or mitigated. Modelling, which is like any other hypothesis-driven approach, aims to develop a better understanding of biological phenomena. However, diseases processes generally, and particularly those related to transmission, will in many cases be imperfectly understood or too complex to systematically describe, so models will necessarily be simplifications of the overall system. It is essential, therefore, that models are designed carefully and used appropriately. Key to this is identifying what specific questions a model might be expected to answer and what data is available to inform the model. A particular type of model might be fine for one particular situation but highly inappropriate for another. It is also important to appreciate and communicate what simplifications and assumptions have had to be made and how this might affect the robustness of the modelling results. It is also particularly important to understand that models frequently make what can be hidden assumptions about underlying processes because of the way they have been constructed and these assumptions also need to be carefully considered and made explicit, particularly for non-expert audiences. This chapter, therefore, provides a brief introduction to some of these aspects of epidemic modelling for those that might be less familiar with them.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Mathematical models when applied to infectious disease data can provide extremely useful insights into the possible future impacts of potential emerging epidemics and how they might be best controlled or mitigated. Modelling, which is like any other hypothesis-driven approach, aims to develop a better understanding of biological phenomena. However, diseases processes generally, and particularly those related to transmission, will in many cases be imperfectly understood or too complex to systematically describe, so models will necessarily be simplifications of the overall system. It is essential, therefore, that models are designed carefully and used appropriately. Key to this is identifying what specific questions a model might be expected to answer and what data is available to inform the model. A particular type of model might be fine for one particular situation but highly inappropriate for another. It is also important to appreciate and communicate what simplifications and assumptions have had to be made and how this might affect the robustness of the modelling results. It is also particularly important to understand that models frequently make what can be hidden assumptions about underlying processes because of the way they have been constructed and these assumptions also need to be carefully considered and made explicit, particularly for non-expert audiences. This chapter, therefore, provides a brief introduction to some of these aspects of epidemic modelling for those that might be less familiar with them.
subject
  • Epidemics
  • Epidemiology
  • Infectious diseases
  • Mathematical modeling
  • Applied mathematics
  • Biological hazards
  • Knowledge representation
  • Mathematical terminology
  • Mathematical and quantitative methods (economics)
  • Religious terminology
  • Conceptual modelling
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software