value
| - Abstract Background Traditional methods for cardiopulmonary assessment of Coronavirus Disease 2019 (COVID-19) patients pose risks to, both, patients and examiners. This necessitates a remote examination of such patients without sacrificing information quality. Research Question Assess the feasibility of a 5G-based robot-assisted remote ultrasound system in examining COVID-19 patients and establish an examination protocol for telerobotic ultrasound scanning. Study Design and Methods Twenty-three COVID-19 patients were included and divided into two groups. Twelve were non-severe cases, and 11 were severe cases. All patients underwent a 5G-based robot-assisted remote ultrasound system examination of the lungs and heart following an established protocol. Distribution characteristics and morphology of the lung and surrounding tissue lesions, left ventricular ejection fraction (LVEF), ventricular area ratio, pericardial effusion, and examination-related complications were recorded. Bilateral lung lesions were evaluated by lung ultrasound score (LUS). Results The remote ultrasound system successfully and safely performed cardiopulmonary examinations of all patients. Peripheral lung lesions were clearly evaluated. Severe cases had significantly more diseased regions [median (interquartile range), 6.0 (2.0-11.0) vs. 1.0 (0.0-2.8)] and higher LUSs [12.0 (4.0-24.0) vs. 2.0 (0.0-4.0)] than non-severe cases (both, P < 0.05 ). One non-severe case (8.3%, 95%CI, 1.5% to 35.4%) and three severe cases (27.3%, 95%CI, 9.7% to 56.6%) were complicated by pleural effusions. Four severe cases (36.4%, 95%CI, 15.2% to 64.6%) were complicated by pericardial effusions (vs 0% of non-severe cases, P < 0.05). No patients had significant examination-related complications. Interpretation 5G-based robot-assisted remote ultrasound system is feasible, and effectively obtains ultrasound characteristics for cardiopulmonary assessment of COVID-19 patients. By following established protocols and considering medical history, clinical manifestations, and laboratory markers, it might help to evaluate the severity of COVID-19 remotely.
|