AttributesValues
type
value
  • Abstract Biological oscillators are vital to living organisms, which use them as clocks for time-sensitive processes. However, much is unknown about mechanisms which can give rise to coherent oscillatory behavior, with few exceptions (e.g., explicitly delayed self-repressors and simple models of specific organisms’ circadian clocks). We present what may be the simplest possible reliable gene network oscillator, a self-repressing gene. We show that binding cooperativity, which has not been considered in detail in this context, can combine with small numbers of intermediate steps to create coherent oscillation. We also note that noise blurs the line between oscillatory and non-oscillatory behavior.
Subject
  • Neuroscience
  • Gene expression
  • Electrophysiology
  • Genes
  • DNA-binding proteins
  • Organisms
  • Oscillation
  • Neurophysiology
  • Earthquake engineering
  • Neural coding
  • Computational neuroscience
  • Neural circuits
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software