About: Public health interventions have been implemented to mitigate the spread of coronavirus disease 2019 (COVID-19) in Ontario, Canada; however, the quantification of their effectiveness remains to be done and is important to determine if some of the social distancing measures can be relaxed without resulting in a second wave. We aim to equip local public health decision- and policy-makers with mathematical model-based quantification of implemented public health measures and estimation of the trend of COVID-19 in Ontario to inform future actions in terms of outbreak control and de-escalation of social distancing. Our estimates confirm that (1) social distancing measures have helped mitigate transmission by reducing daily infection contact rate, but the disease transmission probability per contact remains as high as 0.145 and case detection rate was so low that the effective reproduction number remained higher than the threshold for disease control until the closure of non-essential business in the Province; (2) improvement in case detection rate and closure of non-essential business had resulted in further reduction of the effective control number to under the threshold. We predict the number of confirmed cases according to different control efficacies including a combination of reducing further contact rates and transmission probability per contact. We show that improved case detection rate plays a decisive role to reduce the effective reproduction number, and there is still much room in terms of improving personal protection measures to compensate for the strict social distancing measures.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Public health interventions have been implemented to mitigate the spread of coronavirus disease 2019 (COVID-19) in Ontario, Canada; however, the quantification of their effectiveness remains to be done and is important to determine if some of the social distancing measures can be relaxed without resulting in a second wave. We aim to equip local public health decision- and policy-makers with mathematical model-based quantification of implemented public health measures and estimation of the trend of COVID-19 in Ontario to inform future actions in terms of outbreak control and de-escalation of social distancing. Our estimates confirm that (1) social distancing measures have helped mitigate transmission by reducing daily infection contact rate, but the disease transmission probability per contact remains as high as 0.145 and case detection rate was so low that the effective reproduction number remained higher than the threshold for disease control until the closure of non-essential business in the Province; (2) improvement in case detection rate and closure of non-essential business had resulted in further reduction of the effective control number to under the threshold. We predict the number of confirmed cases according to different control efficacies including a combination of reducing further contact rates and transmission probability per contact. We show that improved case detection rate plays a decisive role to reduce the effective reproduction number, and there is still much room in terms of improving personal protection measures to compensate for the strict social distancing measures.
Subject
  • Epidemiology
  • Headgear
  • Protective gear
  • Safety engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software