Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
ESTIMATING CUMULATIVE COVID-19 INFECTIONS BY A NOVEL %22PANDEMIC RATE EQUATION%22
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
ESTIMATING CUMULATIVE COVID-19 INFECTIONS BY A NOVEL %22PANDEMIC RATE EQUATION%22
Creator
Hamilton, David
Hamilton, D
source
MedRxiv
abstract
A fundamental problem dealing with the Covid-19 pandemic has been to estimate the rate of infection, since so many cases are asymptomatic and contagious just for a few weeks. For example, in the US, estimate the proportion P(t) = N/330 where N is the US total who have ever been infected (in millions)at time t (months, t =0 being March 20). This is important for decisions on social restrictions, and allocation of medical resources, etc. However, the demand for extensive testing has not produced good estimates. In the US, the CDC has used the blood supply to sample for anti-bodies. Anti-bodies do not tell the whole picture, according to the Karolinska Instituet , many post infection cases show T-cell immunity, but no anti-bodies. We introduce a method based on a difference-differential equation (dde) for P(t). We emphasize that this is just for the present, with no prediction on how the pandemic will evolve. The dde uses only x=x(s), which is the number/million testing positive, and y=y(s), the number/million who have been tested for all time 0 < s < t (months), with no assumptions on the dynamics of the pandemic. However, we need two parameters. First, R , the ratio of asymptomatic to symptomatic infected cases. Second, T , the period of active infection when the virus can be detected. Both are random variables with distribution which can be estimated. For fixed R, we prove uniform bounds (1+ R) x/(y +1) < P(t) < (1+ R) x(t) , are best possible, with range depending on T . One advantage of our theory is being able to estimate P for many regions and countries where x and y is the only information available.
has issue date
2020-08-21
(
xsd:dateTime
)
bibo:doi
10.1101/2020.08.17.20176602
has license
medrxiv
sha1sum (hex)
f6973b3421917acac9b01faa3401043a522f5c6c
schema:url
https://doi.org/10.1101/2020.08.17.20176602
resource representing a document's title
ESTIMATING CUMULATIVE COVID-19 INFECTIONS BY A NOVEL %22PANDEMIC RATE EQUATION%22
resource representing a document's body
covid:f6973b3421917acac9b01faa3401043a522f5c6c#body_text
is
schema:about
of
named entity 'evolve'
named entity 'For'
named entity 'March'
named entity 'COVID-19'
named entity 'DIFFERENTIAL EQUATION'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software