About: Łukasiewicz–Moisil algebra   Goto Sponge  NotDistinct  Permalink

An Entity of Type : owl:Thing, within Data Space : covidontheweb.inria.fr associated with source document(s)

Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebras) in the hope of giving algebraic semantics for the n-valued Łukasiewicz logic. However, in 1956 Alan Rose discovered that for n ≥ 5, the Łukasiewicz–Moisil algebra does not model the Łukasiewicz logic. A faithful model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic was provided by C. C. Chang's MV-algebra, introduced in 1958. For the axiomatically more complicated (finite) n-valued Łukasiewicz logics, suitable algebras were published in 1977 by and called MVn-algebras. MVn-algebras are a subclass of LMn-algebras, and the inclusion is strict for n ≥ 5. In 1982 published some additional constraints that added to LMn-algebras produc

AttributesValues
label
  • Łukasiewicz–Moisil algebra
comment
  • Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebras) in the hope of giving algebraic semantics for the n-valued Łukasiewicz logic. However, in 1956 Alan Rose discovered that for n ≥ 5, the Łukasiewicz–Moisil algebra does not model the Łukasiewicz logic. A faithful model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic was provided by C. C. Chang's MV-algebra, introduced in 1958. For the axiomatically more complicated (finite) n-valued Łukasiewicz logics, suitable algebras were published in 1977 by and called MVn-algebras. MVn-algebras are a subclass of LMn-algebras, and the inclusion is strict for n ≥ 5. In 1982 published some additional constraints that added to LMn-algebras produc
sameAs
topic
described by
Subject
dbo:wikiPageID
dbo:wikiPageRevisionID
dbo:wikiPageWikiLink
dbo:wikiPageExternalLink
is primary topic of
wasDerivedFrom
dbo:abstract
  • Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebras) in the hope of giving algebraic semantics for the n-valued Łukasiewicz logic. However, in 1956 Alan Rose discovered that for n ≥ 5, the Łukasiewicz–Moisil algebra does not model the Łukasiewicz logic. A faithful model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic was provided by C. C. Chang's MV-algebra, introduced in 1958. For the axiomatically more complicated (finite) n-valued Łukasiewicz logics, suitable algebras were published in 1977 by and called MVn-algebras. MVn-algebras are a subclass of LMn-algebras, and the inclusion is strict for n ≥ 5. In 1982 published some additional constraints that added to LMn-algebras produce proper models for n-valued Łukasiewicz logic; Cignoli called his discovery proper Łukasiewicz algebras. Moisil however, published in 1964 a logic to match his algebra (in the general n ≥ 5 case), now called Moisil logic. After coming in contact with Zadeh's fuzzy logic, in 1968 Moisil also introduced an infinitely-many-valued logic variant and its corresponding LMθ algebras. Although the Łukasiewicz implication cannot be defined in a LMn algebra for n ≥ 5, the Heyting implication can be, i.e. LMn algebras are Heyting algebras; as a result, Moisil logics can also be developed (from a purely logical standpoint) in the framework of Brower’s intuitionistic logic.
dbo:wikiPageLength
dbp:wikiPageUsesTemplate
is sameAs of
is topic of
is dbp:knownFor of
is dbo:wikiPageWikiLink of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software